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Abstract

A pair of correlated photons generated from parametric down conversion was sent to two
independent Michelson interferometers. Second order interference were studied by means

of a coincidence measurement between the outputs of two interferometers. The reported

experiment and analysis studied this second order interference phenomena from the point of
view of Einsteln-Podolsky-Roeen paradox. The experiment was done in two steps. The first

step of the experiment used 50 psec and 3 nsec coincidence time window simultaneously. The

50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers.
The interference visibility was measured to be 38% and 21% for 50 psec time window and
22% and 7% for 3 nsec time window, when the optical path difference of the interferometers

were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows,
the experiment showed the non-classical effect which resulted from an E.P.R. state. The

second step of the experiment used a 20 psec coincidence time window, which was able to
distinguish a 6 mm optical path difference in the interferometers. The interference visibilities

were measured to be 59% for an optical path difference of 7 mm. This is the first observation

of visibility greater than 50% for a two interferometer E.P.R. experiment which demonstrates

nonclassical correlation of sp_ce-time variables.

1 Introduction

Two photon interferometry has drawn a great deal of attention recently because it provides a tool

to study the foundation of quantum mechanics and the fundamental properties of the electro-

magnetic field. A two photon interference experiment using two independent interferometers was

proposed by J. D. Franson[1] which constituted a new type of E.P.R. experiment for space-time

variables. Since then several experiments have reported the second order (second order in inten-

sity, fourth order in field) interference effect.[2]-[5] These experiments have shown visibility less

than 50% when the optical path difference of the interferometers are greater than the coherence

length of the optical beam. The reason that the visibilities are less than 50% is due to the use

of large coincidence time windows in these experiments. It has been pointed out that classical

models predict a maximum of 50% visibility for these experiments.[2][3][6] Quantum theory pre-

dicts visibility greater than 50% for certain entangled states we called E.P.R. state. To make the
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typeofargument presentedby E.P.R.[7]thisstatemust be produced. For thisexperiment a short

coincidencetime window isneeded to preparean E.P.R.state.

Recently,a largeset of measurements for a two photon interferenceexperiment have been

carriedout in our laboratory.In thisexperiment parametricdown conversionisused to produce

the correlatedtwo photons. The intensityofthe down convertedradiationused fortheexperiment

issufficientlylow so thata two photon stateisproduced such that each beam containat most

one photon. Each photon ispassed through an independent Michelson interferometerand isthen

detectedby a coincidencecounter.Ifthe interferometersaresetso thatthe opticalpath diferences

are longerthan the coherencelengthof the fields,thereisno firstorderinterference(firstorderin

intensity,second orderinfield).However, thereissecondorderinterferenceiftheopticalpaths of

the two interferometersare approximately equal.The interferencearisesfrom the frequencyand

wave number correlationina givenpairgeneratedby the phase matching conditions,a_t+ _a_= _a_

and kl + k2 = lq,,where _av and Ib are the pump frequencyand wave number. The second order

interferenceismeasured by studying the visibilityof the interferencefringesthat are generated

by varying the opticalpath differenceof the interferometers.The visibilityof the interference

can be estimatedby classicaland quantum models. The classicalmodel never predictsvisibility

greaterthan 50%. However, foridealizedcondition,the quantum model predictsa 100% visibility

when the coincidencetime window isshorterthan the opticalpath difference.In thiscase,the

registrationtime ofone photon traversingthe longpath and the otherfollowingthe shortpath of

the interferometersisoutsidethe coincidencewindow and willnot be registeredby the coincidence

counter.As shallbe explainedbelow,the use ofa shortcoincidencetime window isequivalentto

preparing a type of entanK]ed state discussed in the original E.P.R. paper.[7]

We report in this paper an experiment which for the first time shows second order interference

visibility greater than 50% for two independent interferometers. We also show in detail how the

E.P.R. state is generated for the coincidence counting experiment.

2 E.P.R. Paradox and E.P.R. State

The E.P.R.paradox was based on the argument thatnon-commuting observablescan have simul-

taneous reality.[7] E.P.R. first gave their criterion: if, without in any way disturbing the system,

we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity,

then there exists an element of reality corresponding to this physics] quantity. The gedanksn ex-

periment discussed by Einstein, Podolsky and Rosen was modified by Bohm in 1951.[8] In Bohm's

version a singlet state I _) of two spin I particles is produced by some source,

I

where IfiJ_')quantum mechanicallydescribea statein whichpartide j has spin *up" 0i "d0wn"

alongthe directionh. For thisstate,ifthe spinofparticleIismeasured along the z -axis,particle

2 willbe found to have itsspin oppositelyalignedalong the z-axiswith unit probability.Thus,

the z-component of the spinof particle2 can be measured without inany way disturbingitand

so isan element of realityaccordingto the E.P.R.criterion.Itissimilarlyfound that the other

components of the spinof particle2 can be determined as elements of physicalrealityand must

existwithout consideringwhich component isbeing measured. Of course,thispoint of view is
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different from that of quantum mechanics. Philosophical arguments aside, the predictability of

the spin of particle 2 with 100% certainty _ft_r measuring the spin of particle 1 is a mathematical

consequence of quantum theory applied to state of the form (1). States of the type (1) are a

particular type of entangled state,[9][10] which will be called E.P.R. state. It is the E.P.R. state

which leading to the nonclassical interference behavior of :he two particle system. It is the E.P.l_

state has no classical analog.
The existence of polarization E.P.R. states have been experimentally demonstrated.[ll]-[14]

The new type of E.P.P,. experiment considers the measurement of position and time correlation

in contrast to the historical measurement of polarization correlation. The key element is to seek

an E.P.R. state for space and time variables. This is closer to the original E.P.R. gedankan

experiment for the determination of position and momentum of a photon. In this case, see FIG. 1,

the two-photon E.P.R. state sought is of the form,

• sPR = L2)+ s2) (2)

where the first amplitude corresponds to the photons both passing along the longer arms of the

interferometers and the second amplitude corresponds to them both following the shorter arms. It

is clear that this is an E.P.R. state of the type defined above, if photon 1 is determined in the long

(short) arm, then, photon 2 follows the long (short) path. The photon path is then an element of

physical reality according to the E.P.IL criterion. In practice state (2) is produced by parametric
down conversion. If we assume perfect phase matching, then because kt + k2 -- constant, a

momentum measurement of one photon determines the momentum of the other. So the momentum

of the photon is also an element of physical reality. If this state does exist, in idealized conditions,

its signature is an interference visibility of 100% when the optical path difference of the two

independent intederometers are equal.

However, the output of the interferometers is not state (2), but rather the state

¢' = ')(L_, L_) + 'i'(St, S2) + _'(L_, S2) + 'I'(St, L2) (3)

which differs because of the presence of the last two terms, which corresponding to one photon

passing the long ann and another passing the shorter arm of the interferometers. State (3) can not

give any determination of the patlm of the photon. It gives a maximum of 50% visibility, which

can not be distinguished from a classical model. However, it will be seen in the next section,

that according to quantum mechanics, the last two terms of (3) can be suppressed by using a
coincidence time window which is shorter than the optical path difference of the intefferometers.

3 Theoretical Discussion

Our version of the new type of E.P.1L experiment is illustrated in FIG. 1. The photon pair gener-

ated from parametric down conversion is seat through two independent Michelson interferometers

I and II. The optical path differences ALt ffi Lt - St and AL2 = L2 - $2 can be arranged to

be shorter or longer then the coherence length of each beam of the down conveTsion field. The

coincidence measurement is between the two output of the interferometers.

The two photon state of the parametric down conversion can be considered as,

ffi [ dkt[ dk,,S(kt+ - g,).A(k,)I I (4)
,,/ J
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FIG. 1: Schematic diagram of the experiment
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where kl is the signal, k2 is the idler and kp is the pump wave number, the 5 function comes from

the perfect phase matching condition of the parametric down conversion, A(k) is the wave packet
distribution function and its width determines the coherence length of the wave packet. After

leaving the interferometers, the wave function becomes,

= _ f dkl f dk25(kl + ks - g)" A(ka)

•[I I It,s) Ikss)+ It, L) It s)+ It, s) I t2 )]
(5)

where [/_M) =[ _)e i'd_O, tp is the phase shift caused by passage of the wave through the system.

The four terms of state (5) corresponding to the photons which have followed the long-long, short-

short, long-short and short-long paths of the interferometers. State (5) is not an E.P.R. state, the
coincidence rate can be estimated as, P_ ffi R_ [ qt Is,

(6)
R, = / dtIF(t,) . {1+ AL, +cos(k, - tt)AZ 

+_ cos[t_(ALa + AL2)- ]hAL2] + ½cos[ka(ALa- A/4) + ]_AL_]}

where I A(tt) ]2- F(ta). Function F(kl) will generaly have about the same width as I A(t) 12. If

ALl and A/4 are greater than the first ordeT coherence length of the wave packets, the second,

third, and fourth terms in (6) will vanish. The last term contains cm[tl(ALt - AL2) +/hA/4];

consequently, so long as I ALl - AL2 I is less than the first order coherence length of the wave

packet, this term gives rise to the interference fringes. If I ALt - A/4 I << coherence length

(equal optical path difference) then the visibility of these fringes attain their maximum value of

00%.
A similar remdt can be obtained from a classical modeL[6][15] In the classical analog to the

above experiment the electric field leaving the interferomet¢_ i will be

1

Ei ffi -_ f dkiA(k_)e qhi'-_'iO "(ei_dz'i} + ei_{si)) (7)

where we neglect the pohrization vector. The intensity is given by

] dtilai(ti)I s .(1 -4-ces 5,) (8)It

where 6i = k/ALi = ¢(Li) - _(Si). The modulation as a function of the optical path difference

AL_ is determined by the width of the function I Ai(_) 12and gives the first order interference

coherence length of the field.
Now suppose the second order interference is measured, the coinddence counting rate P_ oc<

I]I2 >, where the bracket denotes an ensemble average,

< lal_ >- fdka fdk2 <1 Aa(ta) 121A2(t2) 12>
(9)

In order to mode] parametric down conversion it is necessary to account for the correlation in
the two beams that is imposed by the phase matching condition. To do this assume perfect phase

matching and take
<1Ax(kx) 121A=(t2) IS>= 5(ka + ts - k,). G(k_)
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so that
= go f dkla(kl ){1+ coskl£XL_+ co-,(_, - k_)AL2

(lO)
+½cos[k,(/,L,+ + ½cosIk,(,xL,-aZ ) +

It is the same as (6) which we have derived from the state (5).

It is not surprising that a classical model gives the same answer as that of quantum mechanics,

because the above calculations have dealt with the wave nature of radiation for both the quantum

and the classical models. However, if one can take advantageofthe partich nature of the photon,

the quantum prediction will be different. This idea has been demonstrated in the early polarization

E.P.R. experiment using a coincidence measurement to produce an E.P.R. state.J13] For the two

photon interference expedmehi a coincidence measurement _snot enough to suppress the last two

terms of (5) unless the coincidence time window is shorter than the optical path difference of the

interferometers. Then the registration time diit_erence]n which the photons follow the long-short

and short-long paths are outside the time window, i.e., the last two terms of (5) will not be

registered by the coincidence counter. [ l fi] This %ut off" effect will result in an E.P.R. state, which

has no classical analog,

ffi¼/dkl / dhS(k,+ h - k,)a(k,).[Ik,,) Ik,,)+ Ik,s)Ik,s)l (11)

E.P.R. state (11) can provide 100% interference visibility,

- R_ f dk, F(k,). {1 + eosik,(AL, - ALu) + k, aL,]} (12)R,

To realize 100% visibility, besides equal optical path difference in the interferometers, a pump

field with zero band width is required along with perfect phase matching for the parametric down

conversion. One can easily arrange a narrow enough spectral band width of the pump field by

means of a tingle mode laser as was done in this experiment, but, in principle, it is impossible to
achieve perfect phase matching. When the finite size of the crystal and the finite interaction time

of the down conversion is taken into account, the 5 functions of (k_ + h- _) and (_ +_-wp) are

replaced by functions with non-se_ widths giving kt + k2 = k r 4- Ak and tal +ta_ ffi wv4-Aw.[17]
In this case (12) becomes,

f dktF(k,). {1 + cosIka(AL, - AL2) +/hAL2 4- AkAL2]) (13)R, go

The uncertainty Ak will reduce the interference visibility.

A detailed and careful study of the influence of the coincidence time window and the non-

perfect phase matching can be found in reference (6). For a quasi monochromatic wave model,

which is reasonable for parametric down conversion, the general solution of P_ may be written as

1_ -. goifo + fa cos[kl(AL, - AL_) -4-k.rAL2]) (14)

where we assume that the optical path difference is much longer then the coherence length of

the down conversion beams and ignore the trivial terms. The f's depend on the detail of the

experiment, in particular the coincidence time window and the uncertainty Ak. For a large
coincidence window, fl/fo attains a maximum value of 50%. When the time window becomes

shorter and shorter especially shorter than the optical path difference of the interferometers, fl/f0
reaches 100% for zero Ak.
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4 Experiment

The experhn_tal arrangement is shown in FIG.I. A 351.1 nm single mode CW Argon laser

beam was used to pump a 50 mm long potassium dihydrogen phosphate (KDP) nonlinear crystal

for optical parametric down conversion. The coherence length of the 351.1 nm pump beam was

measured to he longer than 5 meters. The KDP crystal was cut at TYPE I phase matching

angJe for generation of w_ and _ photons. Both degenerate and nondegenerate (in frequency)

photon pairs have been used in the experiment. In the degenerate case, _l = _ -- 702.2 nm.

The emission an_les were about 2° relative to the pump. In the nondegenerate case,632.8 nm

and 788.7 nm signal and idler pair were generated. The signed and idler photons were emitted

at angles 1.8°and 2.3°reLative to the pump beam, respectively. The signal and idler photons then

were selected by pinholes and sent to two independent Michelson interferometers I and II. The

interferometers are 5 m apart in order to have space-Uke separated detections. Two Geiger mode

avalanche photodiodes DI and D2 with I nm spectral filters (centered at 702.2 nm for degenerate
case and 788.7 nm and 632.8 nm for nondegenerate case, respectively) were used for monitoring

the first order and the second order interferences by means of direct counting and coincidence

counting. The coincident circuit provides 20 psec, 50 psec and 3 nsec time window. NI, N2, N,

which corresponding to the number of counts from detector I, detector 2 and from the coincidence
time window were recorded simultaneously. The above measurements have taken advantage of the

state-of-the-art millimeter lunar laser ranging high resolution timing diagnostic technique, which

has been developed at the University of Maryland.

The optical path diiTerence ALl = LI - L2 and AL2 = L2 - S_ of the two independent

Michelson interferometers I and II can be changed by step motors continually from white light

condition to about 7.2 mm which is longer then both the coherence length of the down converted

fields and the 20 psec time window. It is also possible to move one of the mirrors discontinuously
to a maximum AL ----12 an.

The experiment was performed in two steps. First, we used a 50 psec and a 3 nsec time window

simultaneously for the coincidence measurement. By comparing the interference visibilities for

AL > 1.5 cm between the 50 psec and 3 nsec coincidence window, we expect to see the "cut oi_'

effect.702.2 nm, photon pairs were used for the first step measurement.

1: AL_ < coherence length
We have measured the first order and the second order interference visibilities when both ALl

and _L_ were shorter than the coherence length of the field. We have also measured the first and

second order interference visibilities when the optical path difference of one intederometer was

shorter than the coherence length and that of the other was much longer than the coherence length.

Fig. 2 (a,b) shows the second order and the first order interference visibilities with A/_= 5 mm

and _LI scanned starting from the white light condition. 97% second order and 82% first order

interference visibilities were observed at the beginning of the scan. All reported values axe directly
measured without noise reduction and theoretical corrections.

2: AL_ > coherence length

Fig. 3(a_b,) reports two typical second order interference visibility measurements in which

AL2was set to & v_lue which was longer than the coherence length a_d ALl was scanned from

white light condition. For each data point, the visibility was calculated from measurements similar

to these shown in fig. 2. It is clear that the interference disappeared at about ALl = 500pro which
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corresponding to the first order coherence length of the field (determined by the band width of

the spectral filter) and reappeared _round ALl -- AL2. These measurements were repeated many
times.

Fig. 4 and table 1 report the second order interference visibility measurement for ALl - AL2

with 50 psec time window and 3 nsec time window. The interference visibilities were measured to

be (38 -I- 6)_ and (21 4- 7)_ for the 50 psec window and (22 4- 2)% and (7 4- 3)_ for the 3 nsec

window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively.

The ratios are about 1.7 _ 0.3 for AL = 2 cm and about 3.0 ± 1.6 for AL = 4 crn, respectively.

The "cut of[ _ elect is c]ear]y demonstrated. However, we still need a visibility more than 50% in

order to have a unambiguous quantum result.

The second step of the experiment used a 20 psec coincidence time window. Higher interference

visibility ( >50% ) was expected at AL > 6 mm. In this experiment, 632.8 nm and 788.7 nm photon

pairs were used for the me,_urement. The Wavelength 632,g nm was used for easy alignment. We

used a CW He-Ne laser beam as input signal to match the 632.8 nm clown conversion mode. Both
632.8 nm and 788.7 nm radiation have much longer coherence length due to the stimulated down

conversion (or so called induced coherence). The parametric amplified signal and idler radiation

were used for careful alignment. High visibility first order interference of the stimulated down

conversion beams were observed before taking date.

Fig. 5, 6 and 7 report the experimental results. Fig. 5 (fig. 6) is a typical measurement in

which ALa(A/._) was fixed at 7 mm and/XL3(ALa) scanned around 7 ram. Fig. 7. reports the

measurement in which both interferometers were scanned around 7 mm. The 7 mm optical path

difference was much longer than the coherence length of the down conversion beam, no first order

interference can be observed in Nl or N_, however, the coincidence measurement N, showed clear

interference fringes in the above measurements. The fringe visibilities are 59% with a period of

632.8 nm and 59% with a period of 788.7 nm for the type of measurements in fig. 5 nd fig. 6,

respectively. When both A/n and _/_ are changed together the visibility is 58% with a period

of 351.1 nm. The solid curves in fig. 5, fig. 6 and fig. 7 are the fittings for 632.6 nm,788.7 nm and

351 nm, respectively. The standard deviation for these measurements is about 2%.

In smmnar_

1. The existence of E.P.R state has been observed by means of:

(1). the ncut oil" effect, i.e., the interference visibility comparison between 50 psec and 3 nsec
coincidence time window.

(2). direct measurement of more than 50% interference visibility for a 20 psec coincidence

time window. This is the first observation of visibility greater than 50% for the two independent

interferometers experiment.

2. The second order interference coherence (second order in intensity fourth order in field) is

not limited by the coherence length of the pump beam only, but also by the non-perfect phase

matching of the parametric down conversion. The uncertainty of the correlation in frequency

determines the second order coherence length. We believe it is the non-perfect phase matching

of the down conversion that reduced the visibility of the second order interference fringes in our

experiment.

We acknowledge many fruitful discussions with C. O. Alley. This work was supported by the
Ofllce of Naval Research under Grant No. N00014-91-J-1430.
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TABLE I: Secondorderinterferencevisibility for equalopticalp_th differencewith
50-psecand 3-nseccoincidencetime window.

Second Order Interference Vis_ility
_u_ op_c_ path difr_

L! - S! - L2 - S2

Li- Si 3-nsec 50--psec

(nun) window window

Visibility ratio

0

1.1

1.8

4.0

20.0

40.0

(95+1)%

(39 + 2)%

(40+2)%

03+2)%

(22-+-2)%

(7 +3)%

(97+3)%

(46+5)%

(47+5)%

(42+5)%

(38+6)%

f21+ 7)%

1.02 + 0.03

1.18+0.14

1.17+0.14

1.27 + O. 17

1.72 + 0.32

3.00 + 1.63
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